The Steinitz Realization Problem (2024)

Sameera VemulapalliDepartment of Mathematics, Stanford Universitysameerav@stanford.edu

Abstract.

Let K𝐾Kitalic_K be a number field and let nβˆˆβ„€>1𝑛subscriptβ„€absent1n\in\mathbb{Z}_{>1}italic_n ∈ blackboard_Z start_POSTSUBSCRIPT > 1 end_POSTSUBSCRIPT. The Steinitz realization problem asks: does every element of Cl⁑(K)Cl𝐾\operatorname{Cl}(K)roman_Cl ( italic_K ) occur as the Steinitz class of a degree n𝑛nitalic_n extension of K𝐾Kitalic_K? In this article, we give an affirmative answer to the Steinitz realization problem for all n𝑛nitalic_n and K𝐾Kitalic_K.

Key words and phrases:

Algebraic numbers; Polynomials; Class groups; Geometry of numbers

2010 Mathematics Subject Classification:

11R04 (primary), 11R09, 11R29, 14H05 (secondary)

1. Introduction

Fix nβˆˆβ„€>1𝑛subscriptβ„€absent1n\in\mathbb{Z}_{>1}italic_n ∈ blackboard_Z start_POSTSUBSCRIPT > 1 end_POSTSUBSCRIPT a positive integer. To any degree n𝑛nitalic_n extension of number fields L/K𝐿𝐾L/Kitalic_L / italic_K, we may canonically associate an element of the ideal class group of K𝐾Kitalic_K, namely [π”ž]delimited-[]π”ž[\mathfrak{a}][ fraktur_a ] where π’ͺL≃π’ͺKnβˆ’1βŠ•π”žsimilar-to-or-equalssubscriptπ’ͺ𝐿direct-sumsuperscriptsubscriptπ’ͺ𝐾𝑛1π”ž\mathcal{O}_{L}\simeq\mathcal{O}_{K}^{n-1}\oplus\mathfrak{a}caligraphic_O start_POSTSUBSCRIPT italic_L end_POSTSUBSCRIPT ≃ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT βŠ• fraktur_a as an π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT-module. The class [π”ž]delimited-[]π”ž[\mathfrak{a}][ fraktur_a ] is called the Steinitz class of L/K𝐿𝐾L/Kitalic_L / italic_K and is denoted St⁑(L/K)St𝐿𝐾\operatorname{St}(L/K)roman_St ( italic_L / italic_K ). By a theorem of Hecke, the square of the Steinitz class St⁑(L/K)St𝐿𝐾\operatorname{St}(L/K)roman_St ( italic_L / italic_K ) is the the class of the relative discriminant Disc⁑(L/K)Disc𝐿𝐾\operatorname{Disc}(L/K)roman_Disc ( italic_L / italic_K ). The Steinitz realization problem asks: does every element of Cl⁑(K)Cl𝐾\operatorname{Cl}(K)roman_Cl ( italic_K ) occur as the Steinitz class of a degree n𝑛nitalic_n extension of K𝐾Kitalic_K?

When n=2,3,4,5𝑛2345n=2,3,4,5italic_n = 2 , 3 , 4 , 5, there is an affirmative answer to the Steinitz realization problem; in these cases the Steinitz classes of Snsubscript𝑆𝑛S_{n}italic_S start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT-extensions are equidistributed in Cl⁑(K)Cl𝐾\operatorname{Cl}(K)roman_Cl ( italic_K ) when degree n𝑛nitalic_n number fields are ordered by discriminant. The case n=2,3𝑛23n=2,3italic_n = 2 , 3 was proven by Kable and Wright [kab] and the case n=4,5𝑛45n=4,5italic_n = 4 , 5 was proven by Bhargava, Shankar, and Wang [bsw]. The proofs rely on the parametrizations of degree n𝑛nitalic_n number fields; for n>6𝑛6n>6italic_n > 6, there are no such parametrizations. The purpose of this article is to give an affirmative answer to the Steinitz realization problem for all n𝑛nitalic_n.

Theorem 1.1.

Every element of Cl⁑(K)Cl𝐾\operatorname{Cl}(K)roman_Cl ( italic_K ) occurs as the Steinitz class of a degree n𝑛nitalic_n extension of K𝐾Kitalic_K with squarefree discriminant.

We give a sketch of the proof. A rank n ring over π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT is a ring that is locally free rank of n𝑛nitalic_n as an π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT-module. By work of Wood [wood], a binary n𝑛nitalic_n-ic form

f⁒(x,y)=f0⁒xn+β‹―+fn⁒yn∈Symn⁑(π’ͺKβŠ•π’ͺK)𝑓π‘₯𝑦subscript𝑓0superscriptπ‘₯𝑛⋯subscript𝑓𝑛superscript𝑦𝑛superscriptSym𝑛direct-sumsubscriptπ’ͺ𝐾subscriptπ’ͺ𝐾f(x,y)=f_{0}x^{n}+\dots+f_{n}y^{n}\in\operatorname{Sym}^{n}(\mathcal{O}_{K}%\oplus\mathcal{O}_{K})italic_f ( italic_x , italic_y ) = italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + β‹― + italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∈ roman_Sym start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT βŠ• caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT )

gives rise to a rank n𝑛nitalic_n ring Rfsubscript𝑅𝑓R_{f}italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT. If π”žπ”ž\mathfrak{a}fraktur_a is an integral ideal of π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT such that fnβˆ’1βˆˆπ”žsubscript𝑓𝑛1π”žf_{n-1}\in\mathfrak{a}italic_f start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ∈ fraktur_a and fnβˆˆπ”ž2subscript𝑓𝑛superscriptπ”ž2f_{n}\in\mathfrak{a}^{2}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, we construct a rank n𝑛nitalic_n ring Rf⁒(𝐚)subscriptπ‘…π‘“πšR_{f}(\mathbf{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( bold_a ) and an inclusion Rfβ†ͺRf⁒(𝐚)absentβ†ͺsubscript𝑅𝑓subscriptπ‘…π‘“πšR_{f}\xhookrightarrow{}R_{f}(\mathbf{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT start_ARROW start_OVERACCENT end_OVERACCENT β†ͺ end_ARROW italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( bold_a ). When f𝑓fitalic_f is irreducible, both rings are orders in a number fields. The Steinitz class of Rf⁒(π”ž)subscriptπ‘…π‘“π”žR_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) is [π”žβˆ’1]delimited-[]superscriptπ”ž1[\mathfrak{a}^{-1}][ fraktur_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] and Disc⁑(Rf⁒(𝐚))=π”žβˆ’2⁒Disc⁑(Rf)Discsubscriptπ‘…π‘“πšsuperscriptπ”ž2Discsubscript𝑅𝑓\operatorname{Disc}(R_{f}(\mathbf{a}))=\mathfrak{a}^{-2}\operatorname{Disc}(R_%{f})roman_Disc ( italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( bold_a ) ) = fraktur_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_Disc ( italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ).

If Disc⁑(Rf⁒(π”ž))Discsubscriptπ‘…π‘“π”ž\operatorname{Disc}(R_{f}(\mathfrak{a}))roman_Disc ( italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) ) is squarefree as an ideal and f⁒(x,y)𝑓π‘₯𝑦f(x,y)italic_f ( italic_x , italic_y ) is irreducible, then Rf⁒(π”ž)subscriptπ‘…π‘“π”žR_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) is the maximal order in a degree n𝑛nitalic_n extension of K𝐾Kitalic_K with Steinitz class [π”žβˆ’1]delimited-[]superscriptπ”ž1[\mathfrak{a}^{-1}][ fraktur_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ]. Thus, Theorem1.1 immediately follows from the existence of an appropriate f⁒(x,y)𝑓π‘₯𝑦f(x,y)italic_f ( italic_x , italic_y ).

Theorem 1.2.

For every nonzero proper prime ideal π”žπ”ž\mathfrak{a}fraktur_a of π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT coprime to (n!)𝑛(n!)( italic_n ! ), there are infinitely many monic degree n𝑛nitalic_n polynomials

f⁒(x)≔xn+f1⁒xnβˆ’1⁒⋯+fn≔𝑓π‘₯superscriptπ‘₯𝑛subscript𝑓1superscriptπ‘₯𝑛1β‹―subscript𝑓𝑛f(x)\coloneqq x^{n}+f_{1}x^{n-1}\dots+f_{n}italic_f ( italic_x ) ≔ italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT β‹― + italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT

with coefficients in π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT such that:

  1. (1)

    f𝑓fitalic_f is irreducible over K𝐾Kitalic_K;

  2. (2)

    fnβˆ’1βˆˆπ”žsubscript𝑓𝑛1π”žf_{n-1}\in\mathfrak{a}italic_f start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ∈ fraktur_a and fnβˆˆπ”ž2subscript𝑓𝑛superscriptπ”ž2f_{n}\in\mathfrak{a}^{2}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT;

  3. (3)

    and Disc⁑(Rf⁒(π”ž))Discsubscriptπ‘…π‘“π”ž\operatorname{Disc}(R_{f}(\mathfrak{a}))roman_Disc ( italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) ) is squarefree as an ideal in K𝐾Kitalic_K.

The proof of Theorem1.2 is a generalization of the proof given by Kedlaya when proving that there exist infinitely many irreducible monic polynomials over β„€β„€\mathbb{Z}blackboard_Z with squarefree discriminant [ked].

1.1. Acknowledgements

The author would like to thank Ravi Vakil and Kiran Kedlaya for valuable conversations. She would also like to thank the NSF and Stanford University, where this work was completed.

2. Construction of Rf⁒(π”ž)subscriptπ‘…π‘“π”žR_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a )

By work of Wood [wood], a binary n𝑛nitalic_n-ic form f0⁒xn+β‹―+fn⁒yn∈Symn⁑(π’ͺKβŠ•π’ͺK)subscript𝑓0superscriptπ‘₯𝑛⋯subscript𝑓𝑛superscript𝑦𝑛superscriptSym𝑛direct-sumsubscriptπ’ͺ𝐾subscriptπ’ͺ𝐾f_{0}x^{n}+\dots+f_{n}y^{n}\in\operatorname{Sym}^{n}(\mathcal{O}_{K}\oplus%\mathcal{O}_{K})italic_f start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + β‹― + italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_y start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∈ roman_Sym start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT βŠ• caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) gives rise to a rank n𝑛nitalic_n ring Rfsubscript𝑅𝑓R_{f}italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT as follows. As an π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT-module, put Rf≔π’ͺKn≔subscript𝑅𝑓superscriptsubscriptπ’ͺ𝐾𝑛R_{f}\coloneqq\mathcal{O}_{K}^{n}italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ≔ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT and label the copies of π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT so we write:

Rf=(π’ͺK)0βŠ•β‹―βŠ•(π’ͺK)nβˆ’1.subscript𝑅𝑓direct-sumsubscriptsubscriptπ’ͺ𝐾0β‹―subscriptsubscriptπ’ͺ𝐾𝑛1R_{f}=(\mathcal{O}_{K})_{0}\oplus\dots\oplus(\mathcal{O}_{K})_{n-1}.italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT = ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT βŠ• β‹― βŠ• ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT .

Let 1=ΞΆ1,…,ΞΆnβˆ’11subscript𝜁1…subscriptπœπ‘›11=\zeta_{1},\dots,\zeta_{n-1}1 = italic_ΞΆ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ΞΆ start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT and ΞΆn=βˆ’fnsubscriptπœπ‘›subscript𝑓𝑛\zeta_{n}=-f_{n}italic_ΞΆ start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = - italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. For 1≀i≀j≀nβˆ’11𝑖𝑗𝑛11\leq i\leq j\leq n-11 ≀ italic_i ≀ italic_j ≀ italic_n - 1 and 1≀k≀n1π‘˜π‘›1\leq k\leq n1 ≀ italic_k ≀ italic_n, define the multiplication maps (π’ͺK)iβŠ—(π’ͺK)jβ†’(π’ͺK)kβ†’tensor-productsubscriptsubscriptπ’ͺ𝐾𝑖subscriptsubscriptπ’ͺ𝐾𝑗subscriptsubscriptπ’ͺπΎπ‘˜(\mathcal{O}_{K})_{i}\otimes(\mathcal{O}_{K})_{j}\rightarrow(\mathcal{O}_{K})_%{k}( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT βŠ— ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT β†’ ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT by:

  1. (1)

    xβŠ—yβ†’βˆ’fi+jβˆ’k⁒΢k⁒x⁒yβ†’tensor-productπ‘₯𝑦subscriptπ‘“π‘–π‘—π‘˜subscriptπœπ‘˜π‘₯𝑦x\otimes y\rightarrow-f_{i+j-k}\zeta_{k}xyitalic_x βŠ— italic_y β†’ - italic_f start_POSTSUBSCRIPT italic_i + italic_j - italic_k end_POSTSUBSCRIPT italic_ΞΆ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x italic_y if max⁑(i+jβˆ’n,1)≀k≀i𝑖𝑗𝑛1π‘˜π‘–\max(i+j-n,1)\leq k\leq iroman_max ( italic_i + italic_j - italic_n , 1 ) ≀ italic_k ≀ italic_i;

  2. (2)

    xβŠ—yβ†’fi+jβˆ’k⁒΢k⁒x⁒yβ†’tensor-productπ‘₯𝑦subscriptπ‘“π‘–π‘—π‘˜subscriptπœπ‘˜π‘₯𝑦x\otimes y\rightarrow f_{i+j-k}\zeta_{k}xyitalic_x βŠ— italic_y β†’ italic_f start_POSTSUBSCRIPT italic_i + italic_j - italic_k end_POSTSUBSCRIPT italic_ΞΆ start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT italic_x italic_y if j<k≀min⁑(i+j,n)π‘—π‘˜π‘–π‘—π‘›j<k\leq\min(i+j,n)italic_j < italic_k ≀ roman_min ( italic_i + italic_j , italic_n );

  3. (3)

    and xβŠ—yβ†’0β†’tensor-productπ‘₯𝑦0x\otimes y\rightarrow 0italic_x βŠ— italic_y β†’ 0 otherwise.

For any nonzero integral ideal π”žπ”ž\mathfrak{a}fraktur_a of K𝐾Kitalic_K, define Rf⁒(π”ž)subscriptπ‘…π‘“π”žR_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) to be the locally free π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT-module given by

Rf⁒(π”ž)≔(π’ͺK)0βŠ•β‹―βŠ•π”žβˆ’1⁒(π’ͺK)nβˆ’1.≔subscriptπ‘…π‘“π”ždirect-sumsubscriptsubscriptπ’ͺ𝐾0β‹―superscriptπ”ž1subscriptsubscriptπ’ͺ𝐾𝑛1R_{f}(\mathfrak{a})\coloneqq(\mathcal{O}_{K})_{0}\oplus\dots\oplus\mathfrak{a}%^{-1}(\mathcal{O}_{K})_{n-1}.italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) ≔ ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT βŠ• β‹― βŠ• fraktur_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT .

There is a natural inclusion of π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT-modules given by RfβŠ†Rf⁒(π”ž)subscript𝑅𝑓subscriptπ‘…π‘“π”žR_{f}\subseteq R_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT βŠ† italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ).

Lemma 2.1.

Rf⁒(π”ž)subscriptπ‘…π‘“π”žR_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) has a π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT-algebra structure extending that of Rfsubscript𝑅𝑓R_{f}italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT if and only if fnβˆ’1βˆˆπ”žsubscript𝑓𝑛1π”žf_{n-1}\in\mathfrak{a}italic_f start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ∈ fraktur_a and fnβˆˆπ”ž2subscript𝑓𝑛superscriptπ”ž2f_{n}\in\mathfrak{a}^{2}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. When fnβˆ’1βˆˆπ”žsubscript𝑓𝑛1π”žf_{n-1}\in\mathfrak{a}italic_f start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ∈ fraktur_a and fnβˆˆπ”ž2subscript𝑓𝑛superscriptπ”ž2f_{n}\in\mathfrak{a}^{2}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, there is a unique π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT-algebra structure on Rf⁒(π”ž)subscriptπ‘…π‘“π”žR_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) extending that of Rfsubscript𝑅𝑓R_{f}italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT, the Steinitz class of Rf⁒(π”ž)subscriptπ‘…π‘“π”žR_{f}(\mathfrak{a})italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) is [π”žβˆ’1]delimited-[]superscriptπ”ž1[\mathfrak{a}^{-1}][ fraktur_a start_POSTSUPERSCRIPT - 1 end_POSTSUPERSCRIPT ] and π”žβˆ’2⁒(Disc⁑(Rf))=(Disc⁑(Rf⁒(π”ž)))superscriptπ”ž2Discsubscript𝑅𝑓Discsubscriptπ‘…π‘“π”ž\mathfrak{a}^{-2}(\operatorname{Disc}(R_{f}))=(\operatorname{Disc}(R_{f}(%\mathfrak{a})))fraktur_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT ( roman_Disc ( italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ) ) = ( roman_Disc ( italic_R start_POSTSUBSCRIPT italic_f end_POSTSUBSCRIPT ( fraktur_a ) ) ).

Proof.

The first statement follows directly from the multiplication table. The second is immediate from the construction.∎

3. Proof of Theorem1.2

The proof given in this section is essentially that given by Kedlaya [ked]. The main differences are that we work over a number field and impose a few additional congruence conditions needed for our application. We repeat much of Kedlaya’s construction verbatim, and encourage the reader to refer to Kedlaya’s paper for more detail. Fix a class [π”ž]∈Cl⁑(K)delimited-[]π”žCl𝐾[\mathfrak{a}]\in\operatorname{Cl}(K)[ fraktur_a ] ∈ roman_Cl ( italic_K ), and pick a representative prime ideal π”žπ”ž\mathfrak{a}fraktur_a coprime to (n!)𝑛(n!)( italic_n ! ). For a1,a2,…,anβˆ’1,b∈Ksubscriptπ‘Ž1subscriptπ‘Ž2…subscriptπ‘Žπ‘›1𝑏𝐾a_{1},a_{2},\dots,a_{n-1},b\in Kitalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_b ∈ italic_K, put:

Qa⁒(x)≔n⁒(xβˆ’a1/n)⁒(xβˆ’a2)⁒…⁒(xβˆ’anβˆ’1)≔subscriptπ‘„π‘Žπ‘₯𝑛π‘₯subscriptπ‘Ž1𝑛π‘₯subscriptπ‘Ž2…π‘₯subscriptπ‘Žπ‘›1Q_{a}(x)\coloneqq n(x-a_{1}/n)(x-a_{2})\dots(x-a_{n-1})italic_Q start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_x ) ≔ italic_n ( italic_x - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) ( italic_x - italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) … ( italic_x - italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT )
Pa,b⁒(x)≔b+∫0xQa⁒(t)⁒𝑑t≔subscriptπ‘ƒπ‘Žπ‘π‘₯𝑏superscriptsubscript0π‘₯subscriptπ‘„π‘Žπ‘‘differential-d𝑑P_{a,b}(x)\coloneqq b+\int_{0}^{x}Q_{a}(t)dtitalic_P start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT ( italic_x ) ≔ italic_b + ∫ start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_x end_POSTSUPERSCRIPT italic_Q start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_t ) italic_d italic_t

The integral in the definition of Pa,b⁒(x)subscriptπ‘ƒπ‘Žπ‘π‘₯P_{a,b}(x)italic_P start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT ( italic_x ) should be interpreted formally; Qa⁒(x)subscriptπ‘„π‘Žπ‘₯Q_{a}(x)italic_Q start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_x ) is a polynomial. The discriminant of Pa,bsubscriptπ‘ƒπ‘Žπ‘P_{a,b}italic_P start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT, up to sign, is the product of Pa,b⁒(x)subscriptπ‘ƒπ‘Žπ‘π‘₯P_{a,b}(x)italic_P start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT ( italic_x ) evaluated at the roots of Qa⁒(x)subscriptπ‘„π‘Žπ‘₯Q_{a}(x)italic_Q start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_x ). So, we obtain the following equality of ideals:

Ξ”a,b=(nn⁒Pa,0⁒(a1/n)+nn⁒b)⁒∏i=1nβˆ’2(Pa,0⁒(ai)+b).subscriptΞ”π‘Žπ‘superscript𝑛𝑛subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž1𝑛superscript𝑛𝑛𝑏superscriptsubscriptproduct𝑖1𝑛2subscriptπ‘ƒπ‘Ž0subscriptπ‘Žπ‘–π‘\Delta_{a,b}=(n^{n}P_{a,0}(a_{1}/n)+n^{n}b)\prod_{i=1}^{n-2}(P_{a,0}(a_{i})+b).roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT = ( italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) + italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b ) ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 2 end_POSTSUPERSCRIPT ( italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + italic_b ) .

Suppose a1βˆˆπ”žsubscriptπ‘Ž1π”ža_{1}\in\mathfrak{a}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ fraktur_a and bβˆˆπ”ž2𝑏superscriptπ”ž2b\in\mathfrak{a}^{2}italic_b ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT. If we write Pa,b⁒(x)=xn+f1⁒xnβˆ’1+β‹―+fnsubscriptπ‘ƒπ‘Žπ‘π‘₯superscriptπ‘₯𝑛subscript𝑓1superscriptπ‘₯𝑛1β‹―subscript𝑓𝑛P_{a,b}(x)=x^{n}+f_{1}x^{n-1}+\dots+f_{n}italic_P start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT ( italic_x ) = italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT + β‹― + italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, then fn=bβˆˆπ”ž2subscript𝑓𝑛𝑏superscriptπ”ž2f_{n}=b\in\mathfrak{a}^{2}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT = italic_b ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT and

fnβˆ’1=(βˆ’1)n⁒∏i=1nβˆ’1aiβˆˆπ”ž.subscript𝑓𝑛1superscript1𝑛superscriptsubscriptproduct𝑖1𝑛1subscriptπ‘Žπ‘–π”žf_{n-1}=(-1)^{n}\prod_{i=1}^{n-1}a_{i}\in\mathfrak{a}.italic_f start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT = ( - 1 ) start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ fraktur_a .

Furthermore, π”ž2superscriptπ”ž2\mathfrak{a}^{2}fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT divides (nn⁒Pa,0⁒(a1/n)+nn⁒b)superscript𝑛𝑛subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž1𝑛superscript𝑛𝑛𝑏(n^{n}P_{a,0}(a_{1}/n)+n^{n}b)( italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) + italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b ) and hence divides Ξ”a,bsubscriptΞ”π‘Žπ‘\Delta_{a,b}roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT. Therefore, we wish to show that there exists a choice of a1,…,anβˆ’1,bsubscriptπ‘Ž1…subscriptπ‘Žπ‘›1𝑏a_{1},\dots,a_{n-1},bitalic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_b with a1βˆˆπ”žsubscriptπ‘Ž1π”ža_{1}\in\mathfrak{a}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ fraktur_a and bβˆˆπ”ž2𝑏superscriptπ”ž2b\in\mathfrak{a}^{2}italic_b ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that Pa,b⁒(x)subscriptπ‘ƒπ‘Žπ‘π‘₯P_{a,b}(x)italic_P start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT ( italic_x ) has integral coefficients, is irreducible, and the ideal π”žβˆ’2⁒Δa,bsuperscriptπ”ž2subscriptΞ”π‘Žπ‘\mathfrak{a}^{-2}\Delta_{a,b}fraktur_a start_POSTSUPERSCRIPT - 2 end_POSTSUPERSCRIPT roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT is squarefree. We will do this by fixing an appropriate choice of a1,…,anβˆ’1subscriptπ‘Ž1…subscriptπ‘Žπ‘›1a_{1},\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT and then applying a squarefree sieve to choose b𝑏bitalic_b.

We will first show that there exist a1,…,anβˆ’1∈π’ͺKsubscriptπ‘Ž1…subscriptπ‘Žπ‘›1subscriptπ’ͺ𝐾a_{1},\dots,a_{n-1}\in\mathcal{O}_{K}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT such that:

  1. (1)

    a1βˆˆπ”žsubscriptπ‘Ž1π”ža_{1}\in\mathfrak{a}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ fraktur_a and ai≑1(modπ”ž)subscriptπ‘Žπ‘–annotated1pmodπ”ža_{i}\equiv 1\pmod{\mathfrak{a}}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≑ 1 start_MODIFIER ( roman_mod start_ARG fraktur_a end_ARG ) end_MODIFIER for i=2,…,nβˆ’1𝑖2…𝑛1i=2,\dots,n-1italic_i = 2 , … , italic_n - 1;

  2. (2)

    Pa,0subscriptπ‘ƒπ‘Ž0P_{a,0}italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT has integral coefficients;

  3. (3)

    for every prime ideal π”­β‰ π”žπ”­π”ž\mathfrak{p}\neq\mathfrak{a}fraktur_p β‰  fraktur_a, there exists b𝑏bitalic_b such that Ξ”a,bsubscriptΞ”π‘Žπ‘\Delta_{a,b}roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT is not divisible by 𝔭2superscript𝔭2\mathfrak{p}^{2}fraktur_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT;

  4. (4)

    there exists b2βˆˆπ”ž2subscript𝑏2superscriptπ”ž2b_{2}\in\mathfrak{a}^{2}italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that Ξ”a,b2subscriptΞ”π‘Žsubscript𝑏2\Delta_{a,b_{2}}roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is not divisible by π”ž3superscriptπ”ž3\mathfrak{a}^{3}fraktur_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT;

  5. (5)

    there exists a prime ideal 𝔭1subscript𝔭1\mathfrak{p}_{1}fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and b1∈π’ͺKsubscript𝑏1subscriptπ’ͺ𝐾b_{1}\in\mathcal{O}_{K}italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT such that Pa,b1subscriptπ‘ƒπ‘Žsubscript𝑏1P_{a,b_{1}}italic_P start_POSTSUBSCRIPT italic_a , italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is irreducible modulo 𝔭1subscript𝔭1\mathfrak{p}_{1}fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT;

  6. (6)

    and the polynomials (nn⁒Pa,0⁒(a1/n)+nn⁒b),(Pa,0⁒(a2)+b),…,(Pa,0⁒(anβˆ’1)+b)superscript𝑛𝑛subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž1𝑛superscript𝑛𝑛𝑏subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž2𝑏…subscriptπ‘ƒπ‘Ž0subscriptπ‘Žπ‘›1𝑏(n^{n}P_{a,0}(a_{1}/n)+n^{n}b),(P_{a,0}(a_{2})+b),\dots,(P_{a,0}(a_{n-1})+b)( italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) + italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b ) , ( italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) + italic_b ) , … , ( italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) + italic_b ) are pairwise coprime.

To do this, we’ll need the following two lemmas.

Lemma 3.1 (Kedlaya, Lemma 2.3 [ked]).

Let γ∈π’ͺK𝛾subscriptπ’ͺ𝐾\gamma\in\mathcal{O}_{K}italic_Ξ³ ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT be be such that (Ξ³)𝛾(\gamma)( italic_Ξ³ ) is a principal prime ideal coprime to (n⁒(nβˆ’1))𝑛𝑛1(n(n-1))( italic_n ( italic_n - 1 ) ). Then there exist infinitely many primes 𝔭1subscript𝔭1\mathfrak{p}_{1}fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT modulo which the polynomial R⁒(x)=xnβˆ’Ξ³nβˆ’1⁒x+γ𝑅π‘₯superscriptπ‘₯𝑛superscript𝛾𝑛1π‘₯𝛾R(x)=x^{n}-\gamma^{n-1}x+\gammaitalic_R ( italic_x ) = italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT - italic_Ξ³ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT italic_x + italic_Ξ³ is irreducible and its derivative R′⁒(x)=n⁒xnβˆ’1βˆ’Ξ³nβˆ’1superscript𝑅′π‘₯𝑛superscriptπ‘₯𝑛1superscript𝛾𝑛1R^{\prime}(x)=nx^{n-1}-\gamma^{n-1}italic_R start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) = italic_n italic_x start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT - italic_Ξ³ start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT splits into linear factors.

Proof.

The polynomial R′⁒(x)superscript𝑅′π‘₯R^{\prime}(x)italic_R start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) has splitting field L=K⁒(ΞΆnβˆ’1,n1/(nβˆ’1))𝐿𝐾subscriptπœπ‘›1superscript𝑛1𝑛1L=K(\zeta_{n-1},n^{1/(n-1)})italic_L = italic_K ( italic_ΞΆ start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT , italic_n start_POSTSUPERSCRIPT 1 / ( italic_n - 1 ) end_POSTSUPERSCRIPT ), in which (Ξ³)𝛾(\gamma)( italic_Ξ³ ) does not ramify because (Ξ³)𝛾(\gamma)( italic_Ξ³ ) does not divide (n⁒(nβˆ’1))𝑛𝑛1(n(n-1))( italic_n ( italic_n - 1 ) ). Thus R𝑅Ritalic_R is an Eisenstein polynomial with respect to any prime above (Ξ³)𝛾(\gamma)( italic_Ξ³ ) in L𝐿Litalic_L; in particular, R𝑅Ritalic_R is irreducible over L𝐿Litalic_L. By the Chebotarev density theorem, there exist infinitely many totally split prime ideals of L𝐿Litalic_L modulo which R𝑅Ritalic_R is irreducible; the norm to K𝐾Kitalic_K of any such prime ideal is a prime ideal of the desired form.∎

Lemma 3.2 (Kedlaya, Lemma 2.4 [ked]).

For any field F𝐹Fitalic_F of characteristic zero, there exist a1,…,anβˆ’1subscriptπ‘Ž1…subscriptπ‘Žπ‘›1a_{1},\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT such that

Pa,0⁒(a1/n),Pa,0⁒(a2),…,Pa,0⁒(anβˆ’1)subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž1𝑛subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž2…subscriptπ‘ƒπ‘Ž0subscriptπ‘Žπ‘›1P_{a,0}(a_{1}/n),P_{a,0}(a_{2}),\dots,P_{a,0}(a_{n-1})italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) , italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , … , italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT )

are distinct.

Let γ𝛾\gammaitalic_Ξ³, 𝔭1subscript𝔭1\mathfrak{p}_{1}fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT, and R⁒(x)𝑅π‘₯R(x)italic_R ( italic_x ) be as in Lemma3.1 and ensure that 𝔭1βˆ€π”žβ’(n!)not-dividessubscript𝔭1π”žπ‘›\mathfrak{p}_{1}\nmid\mathfrak{a}(n!)fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∀ fraktur_a ( italic_n ! ). Apply Lemma3.2 to obtain a1β€²,…,anβˆ’1β€²subscriptsuperscriptπ‘Žβ€²1…subscriptsuperscriptπ‘Žβ€²π‘›1a^{\prime}_{1},\dots,a^{\prime}_{n-1}italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT so that

Paβ€²,0⁒(a1β€²/n),Paβ€²,0⁒(a2β€²),…,Paβ€²,0⁒(anβˆ’1β€²)subscript𝑃superscriptπ‘Žβ€²0subscriptsuperscriptπ‘Žβ€²1𝑛subscript𝑃superscriptπ‘Žβ€²0subscriptsuperscriptπ‘Žβ€²2…subscript𝑃superscriptπ‘Žβ€²0subscriptsuperscriptπ‘Žβ€²π‘›1P_{a^{\prime},0}(a^{\prime}_{1}/n),P_{a^{\prime},0}(a^{\prime}_{2}),\dots,P_{a%^{\prime},0}(a^{\prime}_{n-1})italic_P start_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) , italic_P start_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , … , italic_P start_POSTSUBSCRIPT italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT )

have distinct values. Choose a prime ideal 𝔭2βˆ€π”žβ’(n!)⁒𝔭1not-dividessubscript𝔭2π”žπ‘›subscript𝔭1\mathfrak{p}_{2}\nmid\mathfrak{a}(n!)\mathfrak{p}_{1}fraktur_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∀ fraktur_a ( italic_n ! ) fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT such the reductions have well-defined and distinct values modulo 𝔭2subscript𝔭2\mathfrak{p}_{2}fraktur_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Now use the Chinese remainder theorem to choose a1,…,anβˆ’1∈π’ͺKsubscriptπ‘Ž1…subscriptπ‘Žπ‘›1subscriptπ’ͺ𝐾a_{1},\dots,a_{n-1}\in\mathcal{O}_{K}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT subject to the following congruence conditions:

  • β€’

    a1subscriptπ‘Ž1a_{1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is coprime to (n)𝑛(n)( italic_n ) and is contained in π”žπ”ž\mathfrak{a}fraktur_a and the ideal generated by (nβˆ’1)!𝑛1(n-1)!( italic_n - 1 ) !;

  • β€’

    the integers a2,…,anβˆ’1subscriptπ‘Ž2…subscriptπ‘Žπ‘›1a_{2},\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT are contained in (n!)𝑛(n!)( italic_n ! ) and aiβ‰‘βˆ’1subscriptπ‘Žπ‘–1a_{i}\equiv-1italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≑ - 1 modulo π”žπ”ž\mathfrak{a}fraktur_a for i=2,…,nβˆ’1𝑖2…𝑛1i=2,\dots,n-1italic_i = 2 , … , italic_n - 1;

  • β€’

    the quantities a1/n,…,anβˆ’1subscriptπ‘Ž1𝑛…subscriptπ‘Žπ‘›1a_{1}/n,\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT are congruent to the roots of R′⁒(x)superscript𝑅′π‘₯R^{\prime}(x)italic_R start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) modulo 𝔭1subscript𝔭1\mathfrak{p}_{1}fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT;

  • β€’

    and ai≑aiβ€²subscriptπ‘Žπ‘–subscriptsuperscriptπ‘Žβ€²π‘–a_{i}\equiv a^{\prime}_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≑ italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT modulo 𝔭2subscript𝔭2\mathfrak{p}_{2}fraktur_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

We’ll now show that this choice of a1,…,anβˆ’1subscriptπ‘Ž1…subscriptπ‘Žπ‘›1a_{1},\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT satisfies conditions (1)βˆ’(6)16(1)-(6)( 1 ) - ( 6 ).

  1. (1)

    Follows directly from the choice of aisubscriptπ‘Žπ‘–a_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT.

  2. (2)

    Observe that:

    Qa⁒(x)≑(n⁒xβˆ’a1)⁒xnβˆ’2=n⁒xnβˆ’1βˆ’a1⁒xnβˆ’2(mod(n!)),subscriptπ‘„π‘Žπ‘₯𝑛π‘₯subscriptπ‘Ž1superscriptπ‘₯𝑛2annotated𝑛superscriptπ‘₯𝑛1subscriptπ‘Ž1superscriptπ‘₯𝑛2pmod𝑛Q_{a}(x)\equiv(nx-a_{1})x^{n-2}=nx^{n-1}-a_{1}x^{n-2}\pmod{(n!)},italic_Q start_POSTSUBSCRIPT italic_a end_POSTSUBSCRIPT ( italic_x ) ≑ ( italic_n italic_x - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_x start_POSTSUPERSCRIPT italic_n - 2 end_POSTSUPERSCRIPT = italic_n italic_x start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_n - 2 end_POSTSUPERSCRIPT start_MODIFIER ( roman_mod start_ARG ( italic_n ! ) end_ARG ) end_MODIFIER ,

    so Pa,0subscriptπ‘ƒπ‘Ž0P_{a,0}italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT has integer coefficients.

  3. (3)

    Suppose that π”­β‰ π”žπ”­π”ž\mathfrak{p}\neq\mathfrak{a}fraktur_p β‰  fraktur_a is a prime ideal dividing (n!)𝑛(n!)( italic_n ! ). Then for b∈π’ͺK𝑏subscriptπ’ͺ𝐾b\in\mathcal{O}_{K}italic_b ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT, we have Pa,0⁒(ai)+b≑b(mod𝔭)subscriptπ‘ƒπ‘Ž0subscriptπ‘Žπ‘–π‘annotated𝑏pmod𝔭P_{a,0}(a_{i})+b\equiv b\pmod{\mathfrak{p}}italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) + italic_b ≑ italic_b start_MODIFIER ( roman_mod start_ARG fraktur_p end_ARG ) end_MODIFIER for i=2,…,nβˆ’1𝑖2…𝑛1i=2,\dots,n-1italic_i = 2 , … , italic_n - 1 because aiβˆˆπ”­subscriptπ‘Žπ‘–π”­a_{i}\in\mathfrak{p}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∈ fraktur_p. If π”­βˆ£(n)conditional𝔭𝑛\mathfrak{p}\mid(n)fraktur_p ∣ ( italic_n ), then

    nn⁒Pa,0⁒(a1/n)+nn⁒b≑a1n(mod𝔭)superscript𝑛𝑛subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž1𝑛superscript𝑛𝑛𝑏annotatedsuperscriptsubscriptπ‘Ž1𝑛pmod𝔭n^{n}P_{a,0}(a_{1}/n)+n^{n}b\equiv a_{1}^{n}\pmod{\mathfrak{p}}italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) + italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b ≑ italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT start_MODIFIER ( roman_mod start_ARG fraktur_p end_ARG ) end_MODIFIER

    and if π”­βˆ€(n)not-divides𝔭𝑛\mathfrak{p}\nmid(n)fraktur_p ∀ ( italic_n ), then

    nn⁒Pa,0⁒(a1/n)+nn⁒b≑nn⁒b(mod𝔭)superscript𝑛𝑛subscriptπ‘ƒπ‘Ž0subscriptπ‘Ž1𝑛superscript𝑛𝑛𝑏annotatedsuperscript𝑛𝑛𝑏pmod𝔭n^{n}P_{a,0}(a_{1}/n)+n^{n}b\equiv n^{n}b\pmod{\mathfrak{p}}italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) + italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b ≑ italic_n start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT italic_b start_MODIFIER ( roman_mod start_ARG fraktur_p end_ARG ) end_MODIFIER

    Consequently, Ξ”a,1subscriptΞ”π‘Ž1\Delta_{a,1}roman_Ξ” start_POSTSUBSCRIPT italic_a , 1 end_POSTSUBSCRIPT is not divisible by 𝔭𝔭\mathfrak{p}fraktur_p. Now suppose that 𝔭𝔭\mathfrak{p}fraktur_p is a prime ideal coprime to π”žβ’(n!)π”žπ‘›\mathfrak{a}(n!)fraktur_a ( italic_n ! ), so |π’ͺK/𝔭|>nsubscriptπ’ͺ𝐾𝔭𝑛\lvert\mathcal{O}_{K}/\mathfrak{p}\rvert>n| caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT / fraktur_p | > italic_n. There are at least |π’ͺK/𝔭|βˆ’nsubscriptπ’ͺ𝐾𝔭𝑛\lvert\mathcal{O}_{K}/\mathfrak{p}\rvert-n| caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT / fraktur_p | - italic_n choices of b∈π’ͺK/𝔭𝑏subscriptπ’ͺ𝐾𝔭b\in\mathcal{O}_{K}/\mathfrak{p}italic_b ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT / fraktur_p for which Ξ”a,bsubscriptΞ”π‘Žπ‘\Delta_{a,b}roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT is indivisible by p𝑝pitalic_p, because each linear factor rules out exactly one choice of b𝑏bitalic_b.

  4. (4)

    Choose bβˆˆπ”ž2𝑏superscriptπ”ž2b\in\mathfrak{a}^{2}italic_b ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT so that Pa,0⁒(a1/n)+bβ‰’0(modπ”ž3)not-equivalent-tosubscriptπ‘ƒπ‘Ž0subscriptπ‘Ž1𝑛𝑏annotated0pmodsuperscriptπ”ž3P_{a,0}(a_{1}/n)+b\not\equiv 0\pmod{\mathfrak{a}^{3}}italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n ) + italic_b β‰’ 0 start_MODIFIER ( roman_mod start_ARG fraktur_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) end_MODIFIER. To conclude it suffices to show that Pa,0⁒(ai)β‰’0(modπ”ž)not-equivalent-tosubscriptπ‘ƒπ‘Ž0subscriptπ‘Žπ‘–annotated0pmodπ”žP_{a,0}(a_{i})\not\equiv 0\pmod{\mathfrak{a}}italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) β‰’ 0 start_MODIFIER ( roman_mod start_ARG fraktur_a end_ARG ) end_MODIFIER for all i=2,…,nβˆ’1𝑖2…𝑛1i=2,\dots,n-1italic_i = 2 , … , italic_n - 1. Because aiβ‰‘βˆ’1subscriptπ‘Žπ‘–1a_{i}\equiv-1italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≑ - 1 modulo π”žπ”ž\mathfrak{a}fraktur_a for i=2,…,nβˆ’1𝑖2…𝑛1i=2,\dots,n-1italic_i = 2 , … , italic_n - 1 and Pa,0⁒(0,βˆ’a1,…,βˆ’anβˆ’1)subscriptπ‘ƒπ‘Ž00subscriptπ‘Ž1…subscriptπ‘Žπ‘›1P_{a,0}(0,-a_{1},\dots,-a_{n-1})italic_P start_POSTSUBSCRIPT italic_a , 0 end_POSTSUBSCRIPT ( 0 , - italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , - italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ) is a nonzero polynomial with positive coefficients in a2,…,anβˆ’1subscriptπ‘Ž2…subscriptπ‘Žπ‘›1a_{2},\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT, we can ensure this by choosing π”žπ”ž\mathfrak{a}fraktur_a to have sufficiently large norm.

  5. (5)

    Ensured by the fact that the quantities a1/n,…,anβˆ’1subscriptπ‘Ž1𝑛…subscriptπ‘Žπ‘›1a_{1}/n,\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_n , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT are congruent to the roots of R′⁒(x)superscript𝑅′π‘₯R^{\prime}(x)italic_R start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_x ) modulo 𝔭1subscript𝔭1\mathfrak{p}_{1}fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT.

  6. (6)

    Ensured by the fact that ai≑aiβ€²subscriptπ‘Žπ‘–subscriptsuperscriptπ‘Žβ€²π‘–a_{i}\equiv a^{\prime}_{i}italic_a start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≑ italic_a start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT modulo 𝔭2subscript𝔭2\mathfrak{p}_{2}fraktur_p start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

Given such a choice of the a1,…,anβˆ’1subscriptπ‘Ž1…subscriptπ‘Žπ‘›1a_{1},\dots,a_{n-1}italic_a start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_a start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT above, let T𝑇Titalic_T be the set of all bβˆˆπ”ž2𝑏superscriptπ”ž2b\in\mathfrak{a}^{2}italic_b ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT such that b≑b1(mod𝔭1)𝑏annotatedsubscript𝑏1pmodsubscript𝔭1b\equiv b_{1}\pmod{\mathfrak{p}_{1}}italic_b ≑ italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_MODIFIER ( roman_mod start_ARG fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_ARG ) end_MODIFIER amd b≑b2(modπ”ž3)𝑏annotatedsubscript𝑏2pmodsuperscriptπ”ž3b\equiv b_{2}\pmod{\mathfrak{a}^{3}}italic_b ≑ italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT start_MODIFIER ( roman_mod start_ARG fraktur_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT end_ARG ) end_MODIFIER. For any b∈T𝑏𝑇b\in Titalic_b ∈ italic_T, the polynomial Pa,b⁒(x)=xn+f1⁒xnβˆ’1+β‹―+fnsubscriptπ‘ƒπ‘Žπ‘π‘₯superscriptπ‘₯𝑛subscript𝑓1superscriptπ‘₯𝑛1β‹―subscript𝑓𝑛P_{a,b}(x)=x^{n}+f_{1}x^{n-1}+\dots+f_{n}italic_P start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT ( italic_x ) = italic_x start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT + italic_f start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_x start_POSTSUPERSCRIPT italic_n - 1 end_POSTSUPERSCRIPT + β‹― + italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT is irreducible with integral coefficients such that fnβˆˆπ”ž2subscript𝑓𝑛superscriptπ”ž2f_{n}\in\mathfrak{a}^{2}italic_f start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ fraktur_a start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT, fnβˆ’1βˆˆπ”žsubscript𝑓𝑛1π”žf_{n-1}\in\mathfrak{a}italic_f start_POSTSUBSCRIPT italic_n - 1 end_POSTSUBSCRIPT ∈ fraktur_a, 𝔭1βˆ€Ξ”a,bnot-dividessubscript𝔭1subscriptΞ”π‘Žπ‘\mathfrak{p}_{1}\nmid\Delta_{a,b}fraktur_p start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∀ roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT, and π”ž3βˆ€Ξ”a,bnot-dividessuperscriptπ”ž3subscriptΞ”π‘Žπ‘\mathfrak{a}^{3}\nmid\Delta_{a,b}fraktur_a start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT ∀ roman_Ξ” start_POSTSUBSCRIPT italic_a , italic_b end_POSTSUBSCRIPT. For b∈K𝑏𝐾b\in Kitalic_b ∈ italic_K, put |b|=βˆ‘i=1deg⁑(K)|Οƒi⁒(b)|𝑏superscriptsubscript𝑖1degree𝐾subscriptπœŽπ‘–π‘\lvert b\rvert=\sqrt{\sum_{i=1}^{\deg(K)}\lvert\sigma_{i}(b)\rvert}| italic_b | = square-root start_ARG βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT roman_deg ( italic_K ) end_POSTSUPERSCRIPT | italic_Οƒ start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( italic_b ) | end_ARG where Οƒ1,…,Οƒdeg⁑(K)subscript𝜎1…subscript𝜎degree𝐾\sigma_{1},\dots,\sigma_{\deg(K)}italic_Οƒ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Οƒ start_POSTSUBSCRIPT roman_deg ( italic_K ) end_POSTSUBSCRIPT are the embeddings of K𝐾Kitalic_K into β„‚β„‚\mathbb{C}blackboard_C. The proof of Theorem1.2 is concluded by the following lemma.

Lemma 3.3.

Let T𝑇Titalic_T be a set in π’ͺKsubscriptπ’ͺ𝐾\mathcal{O}_{K}caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT defined by congruence conditions at a finite set of primes S𝑆Sitalic_S. Let c1,…,ck,d1,…,dk∈π’ͺKsubscript𝑐1…subscriptπ‘π‘˜subscript𝑑1…subscriptπ‘‘π‘˜subscriptπ’ͺ𝐾c_{1},\dots,c_{k},d_{1},\dots,d_{k}\in\mathcal{O}_{K}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_c start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT , italic_d start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_d start_POSTSUBSCRIPT italic_k end_POSTSUBSCRIPT ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT and put A⁒(x)=∏i=1k(ci⁒x+di)𝐴π‘₯superscriptsubscriptproduct𝑖1π‘˜subscript𝑐𝑖π‘₯subscript𝑑𝑖A(x)=\prod_{i=1}^{k}(c_{i}x+d_{i})italic_A ( italic_x ) = ∏ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ( italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_x + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ). Suppose that A⁒(x)𝐴π‘₯A(x)italic_A ( italic_x ) is squarefree away from S𝑆Sitalic_S. For π”­β‰ π”žπ”­π”ž\mathfrak{p}\neq\mathfrak{a}fraktur_p β‰  fraktur_a, let

a⁒(𝔭)=#⁒{b∈π’ͺK/𝔭2∣A⁒(b)β‰’0(mod𝔭2)}#⁒(π’ͺK/𝔭2)π‘Žπ”­#conditional-set𝑏subscriptπ’ͺ𝐾superscript𝔭2not-equivalent-to𝐴𝑏annotated0pmodsuperscript𝔭2#subscriptπ’ͺ𝐾superscript𝔭2a(\mathfrak{p})=\frac{\#\{b\in\mathcal{O}_{K}/\mathfrak{p}^{2}\;\mid\;A(b)\not%\equiv 0\pmod{\mathfrak{p}^{2}}\}}{\#(\mathcal{O}_{K}/\mathfrak{p}^{2})}italic_a ( fraktur_p ) = divide start_ARG # { italic_b ∈ caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT / fraktur_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ∣ italic_A ( italic_b ) β‰’ 0 start_MODIFIER ( roman_mod start_ARG fraktur_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) end_MODIFIER } end_ARG start_ARG # ( caligraphic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT / fraktur_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) end_ARG

Then

limNβ†’βˆž#⁒{b∈T∣|b|≀N⁒and⁒A⁒(b)⁒is squarefree away from⁒S}#⁒{b∈T∣|b|≀N}=βˆπ”­βˆ‰Sa⁒(𝔭).subscript→𝑁#conditional-set𝑏𝑇𝑏𝑁and𝐴𝑏is squarefree away from𝑆#conditional-set𝑏𝑇𝑏𝑁subscriptproductπ”­π‘†π‘Žπ”­\lim_{N\rightarrow\infty}\frac{\#\{b\in T\mid\lvert b\rvert\leq N\text{ and }A%(b)\text{ is squarefree away from }S\}}{\#\{b\in T\mid\lvert b\rvert\leq N\}}=%\prod_{\mathfrak{p}\notin S}a(\mathfrak{p}).roman_lim start_POSTSUBSCRIPT italic_N β†’ ∞ end_POSTSUBSCRIPT divide start_ARG # { italic_b ∈ italic_T ∣ | italic_b | ≀ italic_N and italic_A ( italic_b ) is squarefree away from italic_S } end_ARG start_ARG # { italic_b ∈ italic_T ∣ | italic_b | ≀ italic_N } end_ARG = ∏ start_POSTSUBSCRIPT fraktur_p βˆ‰ italic_S end_POSTSUBSCRIPT italic_a ( fraktur_p ) .

If a⁒(𝔭)>0π‘Žπ”­0a(\mathfrak{p})>0italic_a ( fraktur_p ) > 0 for all π”­βˆ‰S𝔭𝑆\mathfrak{p}\notin Sfraktur_p βˆ‰ italic_S, then βˆπ”­β‰ π”ža⁒(𝔭)>0subscriptproductπ”­π”žπ‘Žπ”­0\prod_{\mathfrak{p}\neq\mathfrak{a}}a(\mathfrak{p})>0∏ start_POSTSUBSCRIPT fraktur_p β‰  fraktur_a end_POSTSUBSCRIPT italic_a ( fraktur_p ) > 0.

Proof.

If a⁒(𝔭)>0π‘Žπ”­0a(\mathfrak{p})>0italic_a ( fraktur_p ) > 0 for all π”­βˆ‰S𝔭𝑆\mathfrak{p}\notin Sfraktur_p βˆ‰ italic_S, then there exists a kπ‘˜kitalic_k such that:

βˆπ”­βˆ‰Sa⁒(𝔭)β‰₯βˆπ”­βˆ‰S(1βˆ’kNK/β„šβ’(𝔭)2)>0,subscriptproductπ”­π‘†π‘Žπ”­subscriptproduct𝔭𝑆1π‘˜subscriptπ‘πΎβ„šsuperscript𝔭20\prod_{\mathfrak{p}\notin S}a(\mathfrak{p})\geq\prod_{\mathfrak{p}\notin S}%\bigg{(}1-\frac{k}{N_{K/\mathbb{Q}}(\mathfrak{p})^{2}}\bigg{)}>0,∏ start_POSTSUBSCRIPT fraktur_p βˆ‰ italic_S end_POSTSUBSCRIPT italic_a ( fraktur_p ) β‰₯ ∏ start_POSTSUBSCRIPT fraktur_p βˆ‰ italic_S end_POSTSUBSCRIPT ( 1 - divide start_ARG italic_k end_ARG start_ARG italic_N start_POSTSUBSCRIPT italic_K / blackboard_Q end_POSTSUBSCRIPT ( fraktur_p ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) > 0 ,

which proves the second claim. To prove the first claim it suffices to prove the following tail estimate:

#⁒{b∈T∣|b|≀N,βˆƒπ”­β’s.t.⁒Nm⁑(𝔭)>N⁒and⁒A⁒(b)≑0(mod𝔭2)}=o⁒(Ndeg⁑(K)).#conditional-set𝑏𝑇formulae-sequence𝑏𝑁𝔭s.t.Nm𝔭𝑁and𝐴𝑏annotated0pmodsuperscript𝔭2π‘œsuperscript𝑁degree𝐾\#\{b\in T\mid\lvert b\rvert\leq N,\exists\;\mathfrak{p}\text{ s.t. }%\operatorname{Nm}(\mathfrak{p})>\sqrt{N}\text{ and }A(b)\equiv 0\pmod{%\mathfrak{p}^{2}}\}=o(N^{\deg(K)}).# { italic_b ∈ italic_T ∣ | italic_b | ≀ italic_N , βˆƒ fraktur_p s.t. roman_Nm ( fraktur_p ) > square-root start_ARG italic_N end_ARG and italic_A ( italic_b ) ≑ 0 start_MODIFIER ( roman_mod start_ARG fraktur_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) end_MODIFIER } = italic_o ( italic_N start_POSTSUPERSCRIPT roman_deg ( italic_K ) end_POSTSUPERSCRIPT ) .

We upper bound the tail estimate by the sum of the following expressions:

βˆ‘i=1k⋃Nm⁑(𝔭)>N#⁒{b∈T∣|b|≀N⁒and⁒ci⁒b+di≑0(mod𝔭2)}superscriptsubscript𝑖1π‘˜subscriptNm𝔭𝑁#conditional-set𝑏𝑇𝑏𝑁andsubscript𝑐𝑖𝑏subscript𝑑𝑖annotated0pmodsuperscript𝔭2\sum_{i=1}^{k}\bigcup_{\operatorname{Nm}(\mathfrak{p})>\sqrt{N}}\#\{b\in T\mid%\lvert b\rvert\leq N\text{ and }c_{i}b+d_{i}\equiv 0\pmod{\mathfrak{p}^{2}}\}βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ⋃ start_POSTSUBSCRIPT roman_Nm ( fraktur_p ) > square-root start_ARG italic_N end_ARG end_POSTSUBSCRIPT # { italic_b ∈ italic_T ∣ | italic_b | ≀ italic_N and italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_b + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≑ 0 start_MODIFIER ( roman_mod start_ARG fraktur_p start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG ) end_MODIFIER }
βˆ‘1≀i<j≀kk⋃Nm⁑(𝔭)>N#⁒{b∈T∣|b|≀N⁒and⁒ci⁒b+di≑cj⁒b+dj≑0(mod𝔭)}superscriptsubscript1π‘–π‘—π‘˜π‘˜subscriptNm𝔭𝑁#conditional-set𝑏𝑇𝑏𝑁andsubscript𝑐𝑖𝑏subscript𝑑𝑖subscript𝑐𝑗𝑏subscript𝑑𝑗annotated0pmod𝔭\sum_{1\leq i<j\leq k}^{k}\bigcup_{\operatorname{Nm}(\mathfrak{p})>\sqrt{N}}\#%\{b\in T\mid\lvert b\rvert\leq N\text{ and }c_{i}b+d_{i}\equiv c_{j}b+d_{j}%\equiv 0\pmod{\mathfrak{p}}\}βˆ‘ start_POSTSUBSCRIPT 1 ≀ italic_i < italic_j ≀ italic_k end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_k end_POSTSUPERSCRIPT ⋃ start_POSTSUBSCRIPT roman_Nm ( fraktur_p ) > square-root start_ARG italic_N end_ARG end_POSTSUBSCRIPT # { italic_b ∈ italic_T ∣ | italic_b | ≀ italic_N and italic_c start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_b + italic_d start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ≑ italic_c start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT italic_b + italic_d start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT ≑ 0 start_MODIFIER ( roman_mod start_ARG fraktur_p end_ARG ) end_MODIFIER }

Both sums are upper bounded by O⁒(Ndeg⁑(K)βˆ’1/2)𝑂superscript𝑁degree𝐾12O(N^{\deg(K)-1/2})italic_O ( italic_N start_POSTSUPERSCRIPT roman_deg ( italic_K ) - 1 / 2 end_POSTSUPERSCRIPT ), completing the proof.∎

References

    The Steinitz Realization Problem (2024)
    Top Articles
    35 AWESOME Leftover Ham Recipes- that don't suck
    MY EASY HOMEMADE CHAPATI RECIPE – www.jocajic.com
    Spasa Parish
    Rentals for rent in Maastricht
    159R Bus Schedule Pdf
    Sallisaw Bin Store
    Black Adam Showtimes Near Maya Cinemas Delano
    Espn Transfer Portal Basketball
    Pollen Levels Richmond
    11 Best Sites Like The Chive For Funny Pictures and Memes
    Things to do in Wichita Falls on weekends 12-15 September
    Craigslist Pets Huntsville Alabama
    Paulette Goddard | American Actress, Modern Times, Charlie Chaplin
    What's the Difference Between Halal and Haram Meat & Food?
    Tyreek Hill admits some regrets but calls for officer who restrained him to be fired | CNN
    Haverhill, MA Obituaries | Driscoll Funeral Home and Cremation Service
    Rogers Breece Obituaries
    Ems Isd Skyward Family Access
    Elektrische Arbeit W (Kilowattstunden kWh Strompreis Berechnen Berechnung)
    Omni Id Portal Waconia
    Kellifans.com
    Banned in NYC: Airbnb One Year Later
    Four-Legged Friday: Meet Tuscaloosa's Adoptable All-Stars Cub & Pickle
    Model Center Jasmin
    Ice Dodo Unblocked 76
    Is Slatt Offensive
    Labcorp Locations Near Me
    Storm Prediction Center Convective Outlook
    Experience the Convenience of Po Box 790010 St Louis Mo
    Fungal Symbiote Terraria
    modelo julia - PLAYBOARD
    Poker News Views Gossip
    Abby's Caribbean Cafe
    Joanna Gaines Reveals Who Bought the 'Fixer Upper' Lake House and Her Favorite Features of the Milestone Project
    Tri-State Dog Racing Results
    Navy Qrs Supervisor Answers
    Trade Chart Dave Richard
    Lincoln Financial Field Section 110
    Free Stuff Craigslist Roanoke Va
    Stellaris Resolution
    Wi Dept Of Regulation & Licensing
    Pick N Pull Near Me [Locator Map + Guide + FAQ]
    Crystal Westbrooks Nipple
    Ice Hockey Dboard
    Über 60 Prozent Rabatt auf E-Bikes: Aldi reduziert sÀmtliche Pedelecs stark im Preis - nur noch für kurze Zeit
    Wie blocke ich einen Bot aus Boardman/USA - sellerforum.de
    Infinity Pool Showtimes Near Maya Cinemas Bakersfield
    Dermpathdiagnostics Com Pay Invoice
    How To Use Price Chopper Points At Quiktrip
    Maria Butina Bikini
    Busted Newspaper Zapata Tx
    Latest Posts
    Article information

    Author: Manual Maggio

    Last Updated:

    Views: 6031

    Rating: 4.9 / 5 (49 voted)

    Reviews: 80% of readers found this page helpful

    Author information

    Name: Manual Maggio

    Birthday: 1998-01-20

    Address: 359 Kelvin Stream, Lake Eldonview, MT 33517-1242

    Phone: +577037762465

    Job: Product Hospitality Supervisor

    Hobby: Gardening, Web surfing, Video gaming, Amateur radio, Flag Football, Reading, Table tennis

    Introduction: My name is Manual Maggio, I am a thankful, tender, adventurous, delightful, fantastic, proud, graceful person who loves writing and wants to share my knowledge and understanding with you.